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The Turbulent flow of an incompressible fluid basically satisfies 
the familiar Reynolds equations (see, for example, [1]). However, 

because of their extreme complexity, it has not been possible to solve 

these equations. We are therefore confronted with the problem of 

deriving other equations which are simpler, but which retain all the 

fundamental features of turbulent flow, and which--to a greater extent 

than the Reynolds equations--lend themselves to investigation and 
approximate solution. 

Below we present the derivation of such equations. The deriva- 
tion is based on the assumption that the wavelength k of the turbulent 

pulsations is significantly smaller than the dimension L of the system. 

This assumption permits us to write a system of ordinary first-order 

differential equations for the Fourier amplitude of the rapidly changing 

component of a velocity field, and then--after introduction of the 

distribution func t ion- to  derive an equation for the distribution func- 

tion. 

The equation for an averaged velocity field does not essentially 
differ from the corresponding Reynolds equation. 

The derived system of equations can be used for a numerical cal-  

culation of both the spectrum of small-scale pulsations for a specified 

average field and the average field itself, the latter formed as a re- 

sult of these pulsations. 

1. Pulsations with a small wavelength. Let the flow of the fluid be 
described by the Reynolds number R. Then, for the wave numbers of 
these pulsations (perturbations) which are rapidly attenuated as a result 

of viscosity, we find the following inequality to be valid: k = 2~r/X >_ 

-> R/L, where L denotes the dimensions of the system. Viscosity no 

longer exerts a significant effect on perturbations with wave numbers 

smaller than R/L, but these are attenuated because of the stability of 

the laminar flow, so long as R < R., where R, is the critical Reynolds 

number. Generally speaking, the nonviscous mechanism of attenuation 

is effective in the case of perturbations whose wave numbers do not 

exceed R,/L. 
As soon as R exceeds R, we find nonattenuating perturbations with 

wave numbers in the interval R/L  > k > R. /L.  . 

However, since it is usual that R~ ~. 1000, it follows that the 

perturbations exhibiting the smallest wavelength relative to the dimen- 
sions of the system are the ones responsible for the onset of turbulence. 

Let us assume that perturbations of such large wave numbers pre- 
dominate not only at the initial stage of the turbulization, but also in 
a system with developed turbulence. In this case, the velocity u(r, t) 
and the pressure p(r, t) of the turbulent flow can be presented in the 

form of the sum of the two terms 

u (r ,  t) = U (r ,  t)  -~- u'  ( r ,  t) ,  p ( r ,  t) = P (r ,  t) -t- p'  ( r ,  t ) .  ( 1 . 1 )  

The functions U(r, t) and P(r, t) depend smoothly on the coordinates 

and on time, varying significantly only at distances commensurate with 

the characteristic dimensions of the system, whereas u'(r, t) and p'(r, t) 

oscillate rapidly in space and time. 
Let us introduce the Lagrange variables associated with the velocity 

field: 

r = r (ro, t), U (r0, t) = (~r /0t)r  ~ . 

Let us seek u'(r0, t) and p'(r0, t) in the form 

u' (r0, t) - -  ~ u (k, r0, t) J ' ~ ' ,  p' (to, t) = ~ p (k, to, t) ~t,~o. (1.2)  
k ,~ 

The amplitudes u(k, r0, t) and p(k, r0, t)  contain only a smooth 
dependence on r 0' with the strong dependence contained in the expo- 

nential factors. 
The volume V o for which expansions (1.2) are valid is chosen in 

some vicinity of the point r 0. It must be sufficiently small in com-  
parison with the dimensions of the system in order for all of the smooth- 
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Iy varying functions within the system to be treated as constant. At the 

same time, its linear dimensions must be sufficiently large in com- 

parison with the wavelength of those perturbations which are intensively 
attenuated as a result of viscosity. This choice of the volume V 0 is 

possible if  the Reynolds number for the turbulent flow under considera- 
tion is large. 

2. The equations of motion for the Fourier amplitude and the 
average field. The functions u(r, t) and p(r, t) are the solutions for the 
Navier-Stokes equations [2] and for the continuity equation 

Ou / Ot + iuV)u = __p-1 grad p + ~Au, div u ~ 0. (2.1) 

Here p is the fluid density and v is the kinematic viscosity. 
To find the system of equations which is satisfied by the Fourier 

amplitudes of expansions (i.2), let us substitute (1.1) into (2.1), and 

after having multiplied the left- and right-hand members by 
exp (-iqr0) , we will integrate the resulting equation over the volume 
V 0. Restricting ourselves only to the highest terms of the expansion in 

powers of kL, we obtain 

d 
~ - u ( % t ) @ ( u ( q , t ) ~ 7 ) U @ i Z ( q ' u ( k , t ) ) u ( q - - k , t ) =  (2.21 

= [J-'~q'p (% t) --  v (q'Z _ i div q') u (q, t). 

The derivatives of the functions U(r, t) with respect to r in Eq. (2.2) 

should be taken at the point r = r(r0, t). The vector q' = q'(q, r0, t) re- 

sulting from the transition to Lagrange variables is defined as follows: 

qx' = qx0x0/ax + qy~Y0/0x + qz0z0/ax, and, analogously, the com-  
ponents @ ahd q'z" 

It follows from continuity equation (2.1) that 

div U = 0 ( q ' u ( q ,  t)) = 0. 

Since the component of the vector u(q, t) along q'  is equal to zero, 
we can assume that 

Ux (q, t) = cos 0' cos 4 '  a (% t) --  sin q:' b (q, t), 
u,j (q, t) = cos O' sin g '  a (q, t) + cos q~' b (q, t), 
z~ z (q, t) = --sin O' a (q, t). 

(2.3) 

Here 0'  and q' are the angles of the vector q' in a spherical system 

of coordinates. 
The transition to the equations for a(q, t) and b(q, t) can be ac- 

complished if (2.3) is substituted into (2.2) and if we eliminate p(q, t): 

da (q, t) / dt = .411a (q, t) @ Ar,.b (q, t) - -  

__ i ~ 6q_k,_k. " q' {[sin 0' cos 0i' COS ((p' --  q)l') - -  
k~, ks 

--  COS 0' sin 0i'] a (k~, t) -~ sin 0' sin (q; --  q)l') b (k:, t)) • 

x {[cos 0' cos 02' cos ((p' - ~ ' )  -F, 

@ sin 0" sin 0z'] a (k2, t) @ cos 0' sin (q)' - -  q%') b (k2, t)}, 

db (q,t) /d t  ~ A21a (q, t) @ Ao.2b (q, t) - -  

- -  i ~ 6q_kl_k, q'{[sin 0' COS 01" COS ((p" --- q~l') - -  COS 0' sir) 01'] • 

X a ( k l ,  t) -+- sin0" sin (qg" - -  qh')  b (k : ,  t )}  • 

X {-- cos 02' sin (q)' - -  q)~') a i'k~, t) @ cos ((p' --  (p~.') b ('k2, t)}, 

An = _ ~  q,2 A- iv div q'  - -  cos 2 0' cos 24 '  cOUS O z -  

- -  cos i 0' sin r/' cos q~' aU~/Oy -t- 

+ sin 0' cos 0' cos T' o u x / a z  - -  

- -  cos 2 0' sic T' cos q~' OUv/Ox - -  cos 2 O' sin~T ' OUv/Oy + 

+ sin 0'cos O'sincp'OUv/Oz + siii0' cos 0' cosT'  OUz/OX + 

+ s i n  0 ~ cos 0' sin T' c3Uz'Oy-- sin ~ O' OUz/(~z, 



Axe=cos O'dT"dt -]- cos 0' s in r cos (p' OUx/Ox - -  

- - c o s  0'  cos ~ q)' OUx/Oy+ cos 0'  s in~g 'X 

• - -  cos 0' s in (p' cos (p' OU/Oy - -  

- -  sin 0' singe' OUz/OX + sin O' cos ~p' OUz/Oz, 

A ~  = --cos 0' dq/,dt+cos O' sin qc' cos r 4- 

4- cos 0'  s in ~ g'OUx/Oy-- sin 0' s ing '  • 

xOU~/Oz - -  cos 0' cos z q~' OU u / O x -  

- -  cos 0' s in q '  cos rp' OUv/Oy + sin 0' cos q)' OUi~/Oz , 

A~2 = --vq '~ + iv div q ' - -  

- -  sin z ~' OUx/Ox A- sin q~' cos T' OUx/Oy -t- 

+ s i n  q)' cos T' OUJOx - -  cos ~ q)' OUr~ @ 

Here e l ,  ~[, and e~, ~o~ are the angles  of the vectors  k2 and k~. 
System (2.4) permi ts  us to solve the  prob lem of the behavior  for 

perturbat ions whose wave leng th  is substanfial ly smal le r  than  the  d i -  

mensions of the system. If the ampl i tudes  of these perturbat ions are 

smal l  (for example ,  at  the i n i t i a l  s tage of their  deve lopment ) ,  the  

quadra t ic  terms wi th  respect  to the ampl i tudes  can  be neg lec t ed  in 

(2.4) and we obta in  a s imple  system of l inear  equations.  In inves t iga t -  

ing this l i nea r i zed  system, for each  f ie ld  U(r0, t) i t  is not d i f f icul t  to 

find tha t  reg ion  of wave numbers  which belongs to the per turbat ions 
increas ing  wi th  t ime ,  nor is i t  d i f f icul t  to es tabl ish the rate of the i r  
growth. 

The equa t ion  for the ave rage  f ield of ve loc i t i e s  U(r, t) can be 

obta ined i f  we substi tute (1.1) into (2.1), and i f  we then  in tegra te  over 

the vo lume  V~ 

OUi,/Ot@Ulr k :--p-~OP/Oxi__O/O~rb~.Ti7 ~ ( 2 . 5 )  

where,  for e x a m p l e ,  

T x x = ~ j j U x *  (q, t) u ( q , t ) - -  
q 

= ~ [a* (q, t) a (q, t) cos ~ 0' cos" (p' -- 
q 

- -  a* (q, t) b (q, t) cos 0' sin (p' cos r - -  

- -  b* (q, ~) a (q, t) cos 0' sin (p' cos (p' -~- b* (q, t) b (q, t) sin e (P'l, 

Txu = ~f~ ux* (q, t) u u (q, t). 
q 

The system of (2.4) and (2.5) is thus closed.  

3. The equa t ion  for the dis tr ibut ion function.  If we know the  i n i t i a l  

condit ions and the function U(r, t), wi th  system (2.4) we c a n - i n  
p r inc ip l e - - t r ace  the evo lu t ion  of the perturbat ions a(q, t) and b(q, t). 

However, in  ac tua l  fact ,  to the ex ten t  tha t  we are dea l ing  with per-  

turbations whose wavelengths  are substant ia l ly  smal le r  than  the d i -  

mensions of the system, i t  is at  no t i m e  possible to know the  i n i t i a l  

data exac t ly ,  and we can speak essent ia l ly  only of the  p robab i l i ty  wi th  

which ce r t a in  values  can be an t i c ipa ted  for the i n i t i a l  ampl i tudes  
a(q, 0) and b(q, 0). 

It is therefore necessary to in t roduce the dis tr ibut ion function 

F(aqi, bqx; . . .  ; aqn , bqn; , , ,  t) and to e x a m i n e  an en t i re  set of systems 
differ ing from e a c h  other only in  the magni tudes  of the ampl i tudes  for 

the i n i t i a l  perturbat ions.  The dis t r ibut ion funct ion must  satisfy the 
pa r t i a l  d i f ferent ia l  equat ion  

0 ] 
0---[-'-~- ~ L ( a q ) - r - ~ -  L(bq) F = 0 ,  (3.1) 

q 

whose charac ter i s t ics  are the equat ions of (2.4). Hence it  follows that  

L(aq) and L(bq) represent  the  r igh t -hand members  of the first and 
second equat ions in  (2.4), respec t ive ly .  

Consequently,  to obta in  exhaus t ive  data on the  deve lopmen t  of 
perturbat ions in  a turbulent  flow, we must  find the dis t r ibut ion function 
which satisf ies Eq. (3.1) and the i n i t i a l  condi t ion 

F (aqr , bq;  . . .; aqn, bqn; . . . ; O) 

F o (aqt, bqr; �9 . . ; aqn, bqrt; . . .). 

4. The case of spherical-symmetric motion. For the case of 

s p h e r i c a l - s y m m e t r i c  mot ion,  when 

r = r ("0, 0,  Or/dr~ = ,.,~2/1~, 

the coeff ic ients  Aik in  Eqs. (2.4) have  the form 

.111 -= --~vq': @ iv div q' - -  (1 - -  3 sin:'~') t; / ,', 
At.., - :  . I~ - -  0, i12~ - -  - -  vq '2 -[ i v d i v  q' - -  U / r 

where 8 '  is the angle  be tween the vectors q '  and r; a(q, t) and b(q, t) 

are de te rmined  at  each  point  in  the  coordinate  system wi th  the z -ax i s  
a long r. Since in  this case 

I ' r 4 ' ' 

q" = q [ Q~_O )(~0S,2 0 , /r~ �9 ~n" I/'~ 
- t - V 7 ;  s : u ' -  1 , 

sine ~, __ ( r 0  / r)~ sin-" 
(r / top coseO -) ("0 / ,')~ s;n 2 ~ ; 

where q, I~, p, are the  spher ica l  coordinates,  so tha t  13- --~ 0; i f  the 

ve loc i ty  is d i rec ted  from the center  (U > 0, r / r  0 --~ ~) and k~ ---> ~r/2; 

i f  the v e l o c i t y  is d i rec ted  to the center  U < 0, r / r  0 ~ 0. 

The coeff ic ien ts  A u and A n for U > 0 are  nega t ive  i f  r / r  0 is suf- 
f ic ien t ly  large,  independent  of  the d i rec t ion  of  q, and a l l  o f  the per- 

turbations are therefore a t tenuated,  and the mot ion is not made  turbulent .  
With U < 0 and smal l  r/r0, i t  is only the coef f ic ien t  A n that  is 

nega t ive  for a l l  d i rect ions of the vector q. The coeff ic ien t  As2 remains  

pos i t ive  in  that  region of wave numbers in which i t  is possible to 

neg lec t  viscosi ty.  Consequently,  in  the case of convergent  s p h e r i c a l -  

symmet r i c  mot ion,  a l l  ampl i tudes  a(q, t) are a t t enua ted  at some in -  

stant of t ime ,  whereas the ampl i tudes  b(q , t ) ,  corresponding to a 

cer ta in  region of wave  numbers q, increase  in  size.  

The growth of the ampl i tudes  b(q, t) may  restrain nonl inear  in te r -  

ac t ion l ead ing  to an exchange  of energy between the  components  of 

a(q, t) and b(q, t). However, as follows from Eq. (2.4) and as r / r  0 

diminishes ,  this exchange  can be neglec ted ,  s ince the terms responsible 
for this exchange  are found to be cos &' (r/r0) t imes  smal ler  than  

the terms responsible for the exchange  of energy between the a m p l i -  

tudes b(q, t) referred to various q. If, in addition, the viscosity in the 
system is e x t r e m e l y  smal l ,  we have  

dT U 1 
,~F -:- --  ') ~' - T. T = -2- ~ [ b~ ~q t) I �9 (4.1) 

q 

Final ly ,  omi t t ing  the terms which are quadra t ic  with respect  to 

a(q, t), we wri te  the equat ion  for the ve loc i ty  U(r0, t) which (ol!ows 
from (2.5): 

db/dt  = __p-10]>/8r d- 2 T /r .  (4.2) 

With the aid of system (4.1) and (4.2) we can de te rmine  the i n -  

f luence  exerted by tu rbu l iza t ion  on the col lapse  of the spher ical  cav i ty  

(for the solut ion of this p rob lem without considerat ion of t rubul iza t ion ,  

see, for example ,  [2]). Let us present the expression fi?r the ve loc i ty  

of the inside boundary in the cav i ty  (which is of interest  in this prob- 
l e m )  

oo oo 
c , Toro4r 0 [~ ~0,~ --2L;} ~ T ~176 ( ' r  o-[ ~,~ - ; (ro~ _ Ro ~ _L: b,s):' ~, _ (4.3) 

where R and dR/dt are, respec t ive ly ,  the radius and ve loc i ty  of the 

cav i ty  boundary at  the ins tant  of t i m e  t; ~ and dR0/dt denote  the 

same quantk ies ,  but  at the i n i t i a l  instant  of t ime ;  T O is the i n i t i a l  

energy of  the s m a l l - s c a l e  mot ion  per unit  mass; P0is the pressure at inf ini ty .  
It foilows from (4.3) that  tu rbu l i za t ion - - i f  its i n i t i a l  va lue  is suf- 

f i c i en t ly  s m a l I - d o e s  not a l ter  the law governing the mot ion  of bound- 

ary of a spher ica l  cav i ty  in an incompress ib le  f luid for R << Ro, where 
dR/dr ~ 1/Ra/2. 
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